
DATA SHEET

Flow module Optimal for gas flow sensor evaluation

Description

Technical data

Flow module 0555 0001	
Operating measuring range	050 m/s
Operating temperature range	-4085 °C
Temperature sensitivity	>0,5%/K (dependent on calibration)
Acuracy	< 5% of the measured value (depen- dent on calibration)
Connection	Lötpads auf PCB
Heater	$R_{\rm H}(0^{\circ}{\rm C}) = 45 \ \Omega \ \pm 1\%$
Reference lement	$R_{s}(0^{\circ}C) = 1200 \ \Omega \pm 1\%$
Voltage range (nominal)	5 VDC ±5% (internal main voltage is 10 V)
Analog output, non linear	0 V (2) to 10 V; (operating point at still air = 3,5 V)
Warm-up time	<30 s
Dimensions	(LxW) 45x25 mm
Art no.	0555 0001

Pin assignment

Pin	Assignment
1	Flow output
2 + 3	
4	GND
5	U _{supply} + 5 V
6	Temperature sensor
7	Heater
8	GND
9	Potentiometer

Features

- Easy to use plug @ play module (not calibrated)
- Simple CTA (Constant temperature anemometer)
- . Simple gain adjustment
- No microprocessor or software influenced signal
- Customer specific sensor available upon request 0

Areas of application

- Gaseous measuring media .
- . **Building automation**
- 0 Automotive engineering
- . Medical engineering
- . Device monitoring
- . Cooling devices
- Food industry .

Adjustment procedure (if necessary)

- 1. Power up the module with 5 VDC (min. 200 mA)
- 2. Connect multimeter to "flow output"

3. Adjust potentiometer for an output signal of about 3.5 V DC at flow = Ø

4. Produce a well-known flow e.g. 10 m/s (with reference, for example a mass flow controller)

5. Measure voltage at output (should be in the range of 5 V DC to 7 V DC)

6. Calculate the voltage difference between 0 m/s and 10 m/s (e.g. 2.8 VDC)

7. The signal is the non linearised output signal > 0 m/s to 10 m/s = 3.5 V DC to 6.3 V DC

The signal then can be offset adjusted and linearised with software on target system like a microcontroller, LabView, MatLab etc.

B+B Thermo-Technik GmbH | Heinrich-Hertz-Straße 4 | D-78166 Donaueschingen Fon +49 771 83160 | Fax +49 771 831650 | info@bb-sensors.com | bb-sensors.com